organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Bromo-4-nitro-2-(trifluoromethyl)benzene

Zhenhua Shang* and Yifeng Yu

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China Correspondence e-mail: zhenhuashang@yahoo.com.cn

Received 26 September 2007; accepted 1 October 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.006 Å; R factor = 0.048; wR factor = 0.093; data-to-parameter ratio = 11.4.

The title compound, $C_7H_3BrNO_2$, was synthesized by the nitration of 1-bromo-2-(trifluoromethyl)benzene. In the crystal structure, there are three independent molecules, one of which lies on a crystallographic mirror plane.

Related literature

For related literature, see: Alaimo (1983).

Experimental

Crystal data

 $C_7H_3BrF_3NO_2$ $V = 4274.8 (15) Å^3$ $M_r = 270.01$ Z = 20Orthorhombic, *Pnma*Mo K α radiationa = 9.775 (2) Å $\mu = 4.83 \text{ mm}^{-1}$ b = 34.665 (7) ÅT = 113 (2) Kc = 12.615 (3) Å $0.32 \times 0.28 \times 0.10 \text{ mm}$

Data collection

Rigaku Saturn diffractometer	19894 measured reflections
Absorption correction: numerical	3814 independent reflections
(NUMABS; Rigaku, 2005)	3342 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.307, \ T_{\max} = 0.644$	$R_{\rm int} = 0.054$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$ $vR(F^2) = 0.093$ S = 1.23 814 = 0.003	334 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
3814 reflections	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Data collection: *CrystalClear* (Rigaku, 1999); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *CrystalStructure* (Rigaku/MSC, 2005); software used to prepare material for publication: *CrystalStructure*.

The authors thank the Outstanding Young Scholar funds of Hebei University of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2517).

References

Alaimo, R. J. (1983). US Patent No. 4 393 208.

Rigaku (1999). CrystalClear. Version 1.3.6. Rigaku Corporation, Tokyo, Japan. Rigaku (2005). NUMABS. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2005). CrystalStructure. Version 3.7.0 Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o4266 [doi:10.1107/S1600536807048180]

1-Bromo-4-nitro-2-(trifluoromethyl)benzene

Z. Shang and Y. Yu

Comment

Substituted trifluoromethylindolo[2,3-*b*]quinoxaline is useful as a immunomodulating agent (Alaimo, 1983). Herein we report the crystal structure of the starting material 1-bromo-4-nitro-2-(trifluoromethyl)benzene (Fig. 1) obtained from 1-bromo-2-(trifluoromethyl)benzene through nitration. There are two and a half molecules in the asymmetric unit. In each molecule the C—C(F₃) bond length reflects the expected lack of delocalization of electrons from the benzene ring.

Experimental

To a mixture of 1-bromo-2-(trifluoromethyl)benzene (75 g, 0.33 mol) and concentrated sulfonic acid (37 ml) was added a mixture of concentrated HNO~3 (15 mL) and concentrated H~2SO~4 (24 ml) and cooled with ice-water. The reaction mixture was stirred at room temperature for 2 h. Then the solution was poured into 500 ml ice-water and a solid appeared which was collected through filtration and recrystalized with ethnaol. 50 mg was dissolved in 20 ml me thanol and the solution was kept at room temperature for 10 d; natural evaporation gave colorless single crystals of suitable for X-ray analysis.

Refinement

H atoms were positioned geometrically, with C—H = 0.95Å refined in a riding-model approximation, with $U_{iso}(H)=1.2U_{eq}$.

Figures

Fig. 1. The molecular structure of one of the independent molecules in the asymmetric unit drawn with 30% probability ellipsoids.

1-Bromo-4-nitro-2-(trifluoromethyl)benzene

Crystal data
C ₇ H ₃ BrF ₃ NO ₂
$M_r = 270.01$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n

 $D_x = 2.098 \text{ Mg m}^{-3}$ Melting point: 167-169 K Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7636 reflections

a = 9.775 (2) Å
<i>b</i> = 34.665 (7) Å
c = 12.615 (3) Å
$V = 4274.8 (15) \text{ Å}^3$
Z = 20
$F_{000} = 2600$

Data collection

3342 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.054$
$\theta_{\text{max}} = 25.0^{\circ}$
$\theta_{\min} = 1.7^{\circ}$
$h = -11 \rightarrow 11$
$k = -41 \rightarrow 41$
$l = -10 \rightarrow 15$
Standard reflections: ?

 $\theta = 2.6-25.0^{\circ}$ $\mu = 4.83 \text{ mm}^{-1}$ T = 113 (2) KPlatelet, colorless $0.32 \times 0.28 \times 0.10 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.093$	$w = 1/[\sigma^2(F_o^2) + (0.0242P)^2 + 5.9058P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.23	$(\Delta/\sigma)_{\text{max}} = 0.002$
3814 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
334 parameters	$\Delta \rho_{min} = -0.60 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.71785 (6)	0.7500	0.49590 (5)	0.02333 (17)
Br2	-0.10592 (4)	0.551368 (12)	0.49280 (3)	0.02231 (14)
Br3	0.51998 (5)	0.645799 (12)	0.50253 (3)	0.02508 (14)
F1	0.5706 (3)	0.71904 (7)	0.28711 (19)	0.0329 (6)
F2	0.3915 (4)	0.7500	0.2374 (3)	0.0441 (11)
F3	0.0436 (3)	0.57794 (7)	0.27940 (19)	0.0336 (6)
F4	0.2229 (3)	0.54607 (9)	0.23590 (19)	0.0419 (8)
F5	0.0439 (3)	0.51612 (7)	0.28866 (19)	0.0343 (7)
F6	0.6698 (3)	0.61994 (8)	0.71395 (19)	0.0357 (7)
F7	0.8453 (3)	0.65256 (9)	0.76192 (19)	0.0428 (8)
F8	0.6631 (3)	0.68178 (7)	0.71057 (18)	0.0340 (6)
N1	0.1000 (5)	0.7500	0.5521 (4)	0.0237 (12)
N2	0.5125 (4)	0.54562 (10)	0.5514 (3)	0.0238 (8)
N3	1.1380 (4)	0.65554 (10)	0.4493 (3)	0.0247 (8)
01	0.0275 (5)	0.7500	0.4712 (3)	0.0394 (12)
02	0.0532 (5)	0.7500	0.6412 (3)	0.0401 (13)
03	0.5832 (3)	0.54160 (9)	0.4723 (2)	0.0292 (7)
O4	0.5569 (3)	0.54644 (9)	0.6419 (2)	0.0314 (8)
05	1.2087 (3)	0.65726 (10)	0.5286 (3)	0.0381 (9)
O6	1.1842 (3)	0.65564 (10)	0.3590 (2)	0.0371 (9)
C1	0.5243 (6)	0.7500	0.5085 (4)	0.0188 (13)
C2	0.4383 (6)	0.7500	0.4201 (4)	0.0189 (13)
C3	0.2988 (6)	0.7500	0.4362 (5)	0.0242 (15)
H3	0.2382	0.7500	0.3773	0.029*
C4	0.2480 (6)	0.7500	0.5372 (5)	0.0200 (13)
C5	0.3315 (6)	0.7500	0.6263 (4)	0.0234 (14)
Н5	0.2937	0.7500	0.6957	0.028*
C6	0.4716 (6)	0.7500	0.6105 (5)	0.0219 (14)
H6	0.5318	0.7500	0.6697	0.026*
C7	0.4938 (6)	0.7500	0.3082 (5)	0.0256 (14)
C8	0.0869 (4)	0.55219 (11)	0.5058 (3)	0.0182 (9)
C9	0.1733 (4)	0.54956 (11)	0.4182 (3)	0.0205 (9)
C10	0.3136 (4)	0.54771 (11)	0.4334 (3)	0.0203 (10)
H10	0.3745	0.5457	0.3749	0.024*
C11	0.3622 (4)	0.54888 (12)	0.5362 (3)	0.0209 (9)
C12	0.2802 (4)	0.55240 (12)	0.6238 (3)	0.0225 (10)
H12	0.3181	0.5537	0.6931	0.027*
C13	0.1405 (5)	0.55405 (12)	0.6077 (3)	0.0242 (10)
H13	0.0806	0.5565	0.6667	0.029*
C14	0.1212 (4)	0.54739 (13)	0.3056 (3)	0.0260 (10)
C15	0.7127 (4)	0.64767 (12)	0.4907 (3)	0.0210 (10)
C16	0.7981 (4)	0.65073 (12)	0.5794 (3)	0.0201 (10)
C17	0.9380 (4)	0.65353 (12)	0.5639 (3)	0.0213 (10)
H17	0.9981	0.6554	0.6229	0.026*
C18	0.9892 (4)	0.65353 (12)	0.4621 (3)	0.0211 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C19	0.9059 (4)	0.65096 (12)	0.3741 (3)	0.0226 (10)
H19	0.9440	0.6512	0.3048	0.027*
C20	0.7655 (4)	0.64801 (12)	0.3885 (3)	0.0225 (10)
H20	0.7061	0.6462	0.3291	0.027*
C21	0.7434 (5)	0.65155 (13)	0.6910 (3)	0.0268 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0202 (3)	0.0245 (3)	0.0253 (4)	0.000	-0.0005 (3)	0.000
Br2	0.0167 (2)	0.0241 (3)	0.0261 (3)	0.00012 (18)	0.00066 (19)	0.00021 (18)
Br3	0.0192 (3)	0.0269 (3)	0.0291 (3)	-0.00023 (18)	-0.00128 (19)	0.00139 (18)
F1	0.0358 (16)	0.0361 (15)	0.0268 (14)	0.0032 (13)	0.0095 (12)	-0.0070 (11)
F2	0.028 (2)	0.091 (3)	0.0139 (19)	0.000	-0.0012 (17)	0.000
F3	0.0398 (16)	0.0340 (15)	0.0270 (14)	0.0056 (13)	-0.0095 (12)	0.0045 (11)
F4	0.0253 (15)	0.082 (2)	0.0183 (14)	0.0028 (15)	-0.0004 (12)	-0.0042 (14)
F5	0.0393 (16)	0.0343 (16)	0.0294 (15)	-0.0051 (13)	-0.0098 (12)	-0.0076 (12)
F6	0.0423 (17)	0.0352 (16)	0.0295 (15)	-0.0059 (13)	0.0083 (13)	0.0103 (12)
F7	0.0294 (16)	0.083 (2)	0.0160 (13)	0.0012 (16)	-0.0023 (12)	-0.0010 (13)
F8	0.0410 (17)	0.0352 (16)	0.0259 (14)	0.0061 (13)	0.0098 (12)	-0.0043 (11)
N1	0.022 (3)	0.030 (3)	0.019 (3)	0.000	-0.002 (2)	0.000
N2	0.021 (2)	0.024 (2)	0.026 (2)	-0.0008 (16)	-0.0073 (18)	0.0009 (16)
N3	0.026 (2)	0.026 (2)	0.022 (2)	0.0000 (17)	0.0018 (18)	0.0019 (16)
01	0.026 (3)	0.069 (4)	0.023 (2)	0.000	-0.007 (2)	0.000
O2	0.025 (3)	0.079 (4)	0.016 (2)	0.000	0.006 (2)	0.000
O3	0.0215 (18)	0.042 (2)	0.0239 (17)	0.0042 (15)	0.0010 (14)	-0.0009 (15)
O4	0.0261 (18)	0.045 (2)	0.0229 (17)	-0.0038 (15)	-0.0078 (14)	-0.0005 (14)
O5	0.0189 (18)	0.071 (3)	0.0250 (18)	-0.0058 (17)	-0.0026 (15)	-0.0014 (17)
O6	0.027 (2)	0.062 (2)	0.0224 (18)	-0.0043 (17)	0.0091 (15)	-0.0014 (16)
C1	0.023 (3)	0.012 (3)	0.021 (3)	0.000	-0.004 (3)	0.000
C2	0.022 (3)	0.021 (3)	0.014 (3)	0.000	0.001 (3)	0.000
C3	0.027 (4)	0.027 (4)	0.018 (3)	0.000	-0.004 (3)	0.000
C4	0.021 (3)	0.020 (3)	0.019 (3)	0.000	0.007 (3)	0.000
C5	0.028 (4)	0.030 (4)	0.013 (3)	0.000	0.001 (3)	0.000
C6	0.027 (4)	0.018 (3)	0.021 (3)	0.000	-0.001 (3)	0.000
C7	0.017 (3)	0.037 (4)	0.022 (3)	0.000	0.002 (3)	0.000
C8	0.015 (2)	0.018 (2)	0.021 (2)	-0.0001 (17)	-0.0026 (18)	-0.0025 (17)
С9	0.025 (3)	0.017 (2)	0.020 (2)	0.0034 (18)	-0.0015 (19)	-0.0004 (17)
C10	0.022 (3)	0.022 (2)	0.017 (2)	-0.0043 (19)	0.0026 (18)	0.0014 (17)
C11	0.020 (2)	0.021 (2)	0.022 (2)	0.0007 (18)	0.0051 (19)	-0.0002 (18)
C12	0.025 (3)	0.026 (3)	0.016 (2)	0.000 (2)	-0.0023 (18)	-0.0028 (18)
C13	0.027 (3)	0.025 (2)	0.021 (2)	-0.002 (2)	0.0072 (19)	-0.0026 (18)
C14	0.019 (2)	0.036 (3)	0.023 (2)	0.002 (2)	-0.002 (2)	0.000 (2)
C15	0.019 (2)	0.020 (2)	0.024 (2)	0.0037 (18)	-0.0014 (19)	0.0005 (18)
C16	0.022 (3)	0.019 (2)	0.019 (2)	-0.0017 (18)	0.0005 (19)	0.0011 (18)
C17	0.023 (3)	0.020 (2)	0.021 (2)	-0.0019 (19)	-0.0009 (19)	-0.0011 (18)
C18	0.021 (2)	0.020 (2)	0.022 (2)	-0.0031 (19)	0.002 (2)	-0.0022 (18)
C19	0.027 (3)	0.025 (2)	0.016 (2)	0.001 (2)	0.0038 (19)	0.0008 (18)

C20	0.024 (3)	0.021 (2)	0.022 (2)	0.002 (2)	-0.0046 (19)	0.0008 (18)
C21	0.025 (3)	0.036 (3)	0.019 (2)	0.003 (2)	0.000 (2)	0.003 (2)
Geometric parar	meters (Å, °)					
Br1—C1		1.898 (6)	C4-	—C5	1.38	8 (8)
Br2—C8		1.892 (4)	C5-	C6	1.38	5 (8)
Br3—C15		1.891 (4)	C5-	—Н5	0.95	00
F1—C7		1.336 (4)	C6-	—Н6	0.95	00
F2—C7		1.342 (7)	C7-	—F1 ⁱ	1.33	6 (4)
F3—C14		1.343 (5)	C8-	—C13	1.38	9 (5)
F4—C14		1.328 (5)	C8-	—С9	1.39	4 (6)
F5—C14		1.338 (5)	С9-	C10	1.38	6 (6)
F6—C21		1.342 (5)	С9-	C14	1.51	1 (6)
F7—C21		1.339 (5)	C10	D—C11	1.38	2 (6)
F8—C21		1.333 (5)	C10	0—Н10	0.95	00
N1		1.213 (6)	C11	I—C12	1.37	0 (6)
N101		1.242 (6)	C12	2—C13	1.38	2 (6)
N1C4		1.459 (8)	C12	2—Н12	0.95	00
N2		1.221 (4)	C13	3—Н13	0.95	00
N2—O3		1.222 (4)	C1:	5—C20	1.38	8 (6)
N2-C11		1.486 (6)	C1:	5—C16	1.40	0 (6)
N3—O5		1.217 (4)	Cle	6—C17	1.38	5 (6)
N3—O6		1.225 (4)	Cle	6—C21	1.50	7 (6)
N3—C18		1.466 (5)	C17	7—C18	1.37	8 (6)
C1—C6		1.387 (8)	C17	7—H17	0.95	00
C1—C2		1.397 (8)	C18	8—C19	1.37	9 (6)
С2—С3		1.378 (8)	C19	9—C20	1.38	9 (6)
С2—С7		1.511 (8)	C19	9—Н19	0.95	00
C3—C4		1.368 (8)	C20	0—H20	0.95	00
С3—Н3		0.9500				
O2—N1—O1		123.1 (5)	С9-	—С10—Н10	121.	0
O2—N1—C4		119.5 (5)	C12	2—C11—C10	123.	9 (4)
01—N1—C4		117.4 (5)	C12	2—C11—N2	118.	8 (4)
O4—N2—O3		124.4 (4)	C10	0—C11—N2	117.	3 (4)
O4—N2—C11		118.0 (4)	C11	1—C12—C13	117.	6 (4)
O3—N2—C11		117.6 (3)	C11	I—C12—H12	121.	2
O5—N3—O6		123.7 (4)	C13	3—С12—Н12	121.	2
O5—N3—C18		118.4 (4)	C12	2—С13—С8	120.	4 (4)
O6—N3—C18		117.9 (4)	C12	2—С13—Н13	119.	8
C6—C1—C2		121.2 (6)	C8-	—С13—Н13	119.	8
C6—C1—Br1		116.6 (4)	F4-		106.	8 (4)
C2—C1—Br1		122.2 (4)	F4-		106.	7 (4)
C3—C2—C1		118.5 (5)	F5-		106.	3 (3)
C3—C2—C7		119.5 (5)	F4-	C14C9	111.	8 (4)
C1—C2—C7		121.9 (5)	F5-	C14C9	112.	4 (4)
C4—C3—C2		119.8 (6)	F3-	C14C9	112.	5 (4)
С4—С3—Н3		120.1	C20	0—C15—C16	121.	3 (4)
С2—С3—Н3		120.1	C20	0—C15—Br3	116.	4 (3)

C3—C4—C5	122.7 (6)	C16—C15—Br3	122.2 (3)
C3—C4—N1	118.7 (5)	C17—C16—C15	118.8 (4)
C5—C4—N1	118.6 (5)	C17—C16—C21	118.7 (4)
C6—C5—C4	117.7 (5)	C15—C16—C21	122.5 (4)
С6—С5—Н5	121.1	C18—C17—C16	119.3 (4)
C4—C5—H5	121.1	С18—С17—Н17	120.3
C5—C6—C1	120.1 (6)	С16—С17—Н17	120.3
С5—С6—Н6	120.0	C17—C18—C19	122.4 (4)
С1—С6—Н6	120.0	C17—C18—N3	117.6 (4)
F1 ⁱ —C7—F1	106.9 (5)	C19—C18—N3	120.0 (4)
$F1^{i}$ —C7—F2	106.6 (3)	C18—C19—C20	118.8 (4)
F1—C7—F2	106.6 (3)	С18—С19—Н19	120.6
F1 ⁱ —C7—C2	112.8 (3)	С20—С19—Н19	120.6
F1—C7—C2	112.8 (3)	C15—C20—C19	119.4 (4)
F2—C7—C2	110.7 (5)	С15—С20—Н20	120.3
C13—C8—C9	120.5 (4)	С19—С20—Н20	120.3
C13—C8—Br2	117.2 (3)	F8—C21—F7	107.1 (4)
C9—C8—Br2	122.3 (3)	F8—C21—F6	106.7 (3)
C10—C9—C8	119.6 (4)	F7—C21—F6	106.0 (3)
C10-C9-C14	117.5 (4)	F8—C21—C16	113.4 (4)
C8—C9—C14	123.0 (4)	F7—C21—C16	111.1 (4)
C11—C10—C9	117.9 (4)	F6—C21—C16	112.1 (4)
С11—С10—Н10	121.0		
C6—C1—C2—C3	0.000(1)	C10-C11-C12-C13	1.4 (7)
Br1—C1—C2—C3	180.0	N2-C11-C12-C13	-177.8 (4)
C6—C1—C2—C7	180.000 (2)	C11—C12—C13—C8	0.0 (6)
Br1—C1—C2—C7	0.000 (2)	C9—C8—C13—C12	-1.5 (6)
C1—C2—C3—C4	0.000(1)	Br2-C8-C13-C12	176.1 (3)
C7—C2—C3—C4	180.000 (1)	C10-C9-C14-F4	-3.5 (6)
C2—C3—C4—C5	0.000 (1)	C8—C9—C14—F4	178.4 (4)
C2—C3—C4—N1	180.0	C10-C9-C14-F5	116.6 (4)
O2—N1—C4—C3	180.000 (1)	C8—C9—C14—F5	-61.6 (5)
O1—N1—C4—C3	0.000(1)	C10-C9-C14-F3	-123.5 (4)
O2—N1—C4—C5	0.000(1)	C8—C9—C14—F3	58.4 (5)
O1—N1—C4—C5	180.000 (1)	C20-C15-C16-C17	-1.0 (6)
C3—C4—C5—C6	0.000 (1)	Br3-C15-C16-C17	-177.4 (3)
N1—C4—C5—C6	180.000 (1)	C20-C15-C16-C21	178.3 (4)
C4—C5—C6—C1	0.000 (1)	Br3-C15-C16-C21	1.9 (6)
C2-C1-C6-C5	0.000 (1)	C15-C16-C17-C18	0.5 (6)
Br1—C1—C6—C5	180.000 (1)	C21-C16-C17-C18	-178.8 (4)
C3—C2—C7—F1 ⁱ	119.4 (4)	C16—C17—C18—C19	0.2 (6)
C1—C2—C7—F1 ⁱ	-60.6 (4)	C16—C17—C18—N3	-178.5 (4)
C3—C2—C7—F1	-119.4 (4)	O5—N3—C18—C17	-0.3 (6)
C1—C2—C7—F1	60.6 (4)	O6—N3—C18—C17	-179.8 (4)
C3—C2—C7—F2	0.000(1)	O5—N3—C18—C19	-179.0 (4)
C1—C2—C7—F2	180.0	O6—N3—C18—C19	1.4 (6)
C13—C8—C9—C10	1.8 (6)	C17—C18—C19—C20	-0.5 (7)
Br2-C8-C9-C10	-175.7 (3)	N3—C18—C19—C20	178.2 (4)

C13—C8—C9—C14	179.9 (4)	C16-C15-C20-C19	0.8 (6)
Br2-C8-C9-C14	2.4 (6)	Br3-C15-C20-C19	177.4 (3)
C8—C9—C10—C11	-0.5 (6)	C18—C19—C20—C15	-0.1 (6)
C14—C9—C10—C11	-178.7 (4)	C17—C16—C21—F8	116.7 (4)
C9-C10-C11-C12	-1.1 (6)	C15-C16-C21-F8	-62.6 (6)
C9-C10-C11-N2	178.1 (4)	C17—C16—C21—F7	-4.0 (6)
O4—N2—C11—C12	-0.4 (6)	C15-C16-C21-F7	176.7 (4)
O3—N2—C11—C12	178.3 (4)	C17—C16—C21—F6	-122.4 (4)
O4—N2—C11—C10	-179.7 (4)	C15-C16-C21-F6	58.3 (6)
O3—N2—C11—C10	-0.9 (6)		
Symmetry codes: (i) x , $-y+3/2$, z .			

